当前位置: 首页 » Products » 激光晶体 » Nd:KGW

Nd:KGW

当前位置: 首页 » Products » 激光晶体 » Nd:KGW
Nd:KGW

Nd:KGW晶体是一种可以实现高浓度掺杂的激光晶体,因为该晶体可以与高浓度的Nd离子混合并且具有较大的发射面积,因此其单脉冲和低重复激光性能优于Nd:YAG 。Nd:KGW晶体的吸收带在808 nm处,可以有效地与LD泵浦光源耦合(发射波长为808 nm),从而提高其发光效率。此外,它的半高和半宽为12 nm,使其能够适应LD发射波长随温度的漂移,这有利于进行二极管泵浦KGw激光实验和器件研究。Nd:KGW不仅可以实现自由振荡,Q开关,锁模操作,还可以实现拉曼转换。

Nd:KGW晶体是由受激拉曼散射产生的晶体,经过倍频后可以成为可见光波段的多波长光源。

Nd:KGW晶体的拉曼特性取决于其高激发光束截面、低泵浦阈值、高输出能量、高转换效率以及两个高拉曼增益系数(768和901 cm-1)。拉曼晶体的基频光分别为911 nm,1067 nm和1351 nm,经过倍频后可产生0.455 um,0.533 um和65 um的红,黄和蓝光,可用于材料加工,光通信,遥感,医药,环境监测,精密计量等领域。

物理性质

Nd浓度2.2%(cw),3%(quasi-cw)
荧光寿命130 μs
受激发射截面3.7*10-19 cm2
跃迁波长1067 nm
导热系数Ka=2.6 W/Km
Kb=3.8 W/Km
Kc=3.4 W/Km
dn / dT0.4*10-6 K-1
折射率@ 1.06μmnp=1.978
nm=2.014
ng=2.049
热膨胀系数(100):4*10-6 K-1
(010):3.6*10-6 K-1
(001):8.5*10-6 K-1
密度(g * cm-37.248
比热容Cp500 Jkg-1K-1

光谱性质

激光波长(nm)1067
发射截面(pm2)a32.3
增益带宽(nm)2.73
荧光寿命(μs)110 at 3% doping
导热系数(Wm-1K-1~3

吸收和发射光谱

Nd-KGW激光晶体-吸收谱polar-南京光宝-CRYLINKNd-KGW激光晶体-吸收谱-南京光宝-CRYLINK
Nd-KGW激光晶体-Fluorescence-南京光宝-CRYLINKNd-KGW激光晶体-发射谱polar-南京光宝-CRYLINK

参考文献

[1]  Kalisky Y Y ,  Scheps R ,  Hoffman H J , et al. Efficient diode-pumped Nd:KGW laser grown by top nucleated floating crystal method: Part II[J]. Proceedings of SPIE – The International Society for Optical Engineering, 2004, 5332:28-35.
[2]  Graf T ,  Balmer J E . Lasing properties of diode-laser-pumped Nd:KGW[J]. Optical Engineering, 1995, 34(8):2349-2352.
[3]  Demidovich A A ,  Shkadarevich A P ,  Danailov M B , et al. Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO4 under laser diode pumping[J]. Applied Physics B, 1998, 67(1):11-15.
[4]  Kushawaha V ,  Banerjee A ,  Major L . High-efficiency flashlamp-pumped Nd:KGW laser[J]. Applied Physics B, 1993, 56(4):239-242.
[5]  Grabtchikov A S ,  Kuzmin A N ,  Lisinetskii V A , et al. Passively Q-switched 1.35 μm diode pumped Nd:KGW laser with V:YAG saturable absorber[J]. Optical Materials, 2001, 16(3):349-352.
[6]  Musset O ,  Boquillon J P . Comparative laser study of Nd:KGW and Nd:YAG near 1.3 μm[J]. Applied Physics B, 1997, 64(4):503-506.
[7]  Grabtchikov A S ,  Kuzmin A N ,  Lisinetskii V A , et al. Stimulated Raman scattering in Nd:KGW laser with diode pumping[J]. Journal of Alloys & Compounds, 2000, 300(none):300-302.
[8]  Lisinetskii V A ,  Grabtchikov A S ,  Demidovich A A , et al. Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation[J]. Applied Physics B, 2007, 88(4):499-501.
[9]  Kushawaha V ,  Michael A ,  Major L . Effect of Nd Concentration on the Nd:KGW Laser[J]. APPLIED PHYSICS B LASERS AND OPTICS, 1994.
[10]  Soulard R ,  Zinoviev A ,  Doualan J L , et al. Detailed characterization of pump-induced refractive index changes observed in Nd:YVO(4), Nd:GdVO(4) and Nd:KGW.[J]. Optics Express, 2010, 18(2):1553-68.
[11]  Karlitschek P ,  Hillrichs G . Active and passive Q-switching of a diode pumped Nd:KGW-laser[J]. Applied Physics B, 1996, 64(1):21-24.
[12]  Flood C J ,  Walker D R ,  Driel H . CW diode pumping and FM mode locking of a Nd: KGW laser[J]. Applied Physics B, 1995, 60(2-3):309-312.
[13]  Kalisky Y ,  Kravchik L ,  Labbe C . Repetitive modulation and passively Q-switching of diode-pumped Nd-KGW laser[J]. Optics Communications, 2001, 189(1-3):113-125.
[14] Huang, Jianhong, Lin, et al. Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal.[J]. Optics letters, 2007, 32(9):1096-8.
[15] R Moncorgé,  Chambon B ,  Rivoire J Y , et al. Nd doped crystals for medical laser applications[J]. Optical Materials, 1997, 8(1-2):109-119.
[16]  Halim M ,  Talukder R C ,  Waritanant T , et al. Passive mode-locking of Nd:KGW laser with hot band diode pumping[C]// 2016 Photonics North (PN). Laser Physics Letters, 2016.
[17]  Kushawaha V ,  Yan Y ,  Chen Y . Efficiency of diode-pumped 1.35 m laser from Nd:KGW[J]. Applied Physics B, 1996, 62(5):533-535.
[18]  Musset O ,  Boquillon J P . Flashlamp-pumped Nd:KGW laser at repetition rates up to 50 Hz[J]. Applied Physics B, 1997, 65(1):13-18.
[19] AA Demidovich, VA Lisinetskii, W Kiefer,等. Continuous-wave Raman generation in a diode-pumped Nd~(3+):KGd(WO_(4))_(2) laser.
[20]  Abdolvand A ,  Wilcox K G ,  Kalkandjiev T K , et al. Conical refraction Nd:KGd(WO4)2 laser[J]. Optics Express, 2010, 18(3):2753.
[21]  Yumashev K V ,  Savitski V G ,  Kuleshov N V , et al. Laser performance of N g -cut flash-lamp pumped Nd:KGW at high repetition rates[J]. Applied Physics B, 2007, 89(1):39-43.
[22]  Esmeria J M ,  Ishii H ,  Sato M , et al. Efficient continuous-wave lasing operation of Nd:KGd(WO4)2 at 1.067 μm with diode and Ti:sapphire laser pumping[J]. Optics Letters, 1995, 20(14):1538-40.
[23]  Atanasov P A ,  Tomov R I ,  Perrie?Re J , et al. Growth of Nd:potassium gadolinium tungstate thin-film waveguides by pulsed laser deposition[J]. Appl.phys.lett, 2000, 76(18):2490-2492.
[24]  Major A ,  Langford N ,  Graf T , et al. Diode-pumped passively mode-locked Nd:KGd(WO4)2 laser with 1-W average output power[J]. Optics Letters, 2002, 27(16):1478.
[25]  Stankov K A ,  Marowsky G . High-efficiency multicolor Q-switched Nd3+:KGd(WO4)2 laser[J]. Applied Physics B, 1995, 61(2):213-215.
[26]  Chen Y ,  Major L ,  Kushawaha V . Efficient laser operation of diode-pumped Nd:KGd(WO4)2 crystal at 1.067 μm[J]. Applied Optics, 1996, 35(18):3203-3206.
[27]  Bogdanovich M V ,  Grigor’Ev A V ,  Lantsov K I , et al. A high-power optical parametric oscillator based on a master Nd : KGW laser with a high repetition rate[J]. Quantum Electronics, 2017, 47(4):308-312.

如果你对我们的Nd:KGW感兴趣,请联系我们获取价格或申请样品。

Nd:KGW相关的文章:

暂无与本产品相关的文章,请访问芯飞睿的文章页面播放其他文章。

Nd:KGW相关的案例:

暂无与本产品相关的案例,请访问芯飞睿的案例页面查看其他案例。

Nd:KGW相关的解决方案:

Nd:KGW相关的视频: