当前位置: 首页 » Products » MgO:LiNbO3

MgO:LiNbO3

当前位置: 首页 » Products » MgO:LiNbO3
MgO:LiNbO<sub>3</sub>” class=”wp-image-937″/></div><div class=

掺杂MgO的LiNbO3,晶体较未掺杂LiNbO3,晶体具有高的光损伤阈值和高的非线性转换效率,而且掺杂可以使拉曼散射截面增加和声子模损耗减小。与LiNbO3晶体相比,MgO:LiNbO3 晶体在掺Nd激光器中的NCPM倍频、混频和光参量振荡的应用中有其独有的优势。MgO:LiNbO3晶体在脉冲Nd:YAG激光器和连续Nd:YAG激光器中能够分别地获得超过65%的和45%的倍频效率。MgO:LiNbO3晶体被广泛地应用于光参量振荡(OPO)、光参量放大(OPA)、准相位匹配及集成光波导中。

特点

  • 同质性高
  • 透明范围广
  • 损伤阈值高
  • 良好的光电性能
  • 良好的光电弹性
  • 可降低本征材料的光折变效应

参数

相位匹配角实验值(T=293K)

相互作用波长[μm]Φexp [deg]Note
SHG, o+o ⇒ e
1.06420.532174.55mol% MgO, LN
765mol% MgO
76.55mol% MgO, Li/Nb=0.97
82.37mol% MgO
1.07950.5397575.15mol% MgO, LN
1.07960.5398745mol% MgO, Li/Nb=0.97
1.34140.6707545mol% MgO, LN
Note: The PM angle values are strongly dependent on melt stoichiometry.

NCPM温度的实验值

相互作用波长[μm]T[℃]注意
SHG, o+o e
1.0470.523575.3 
1.06420.532125.40.6mol% MgO, LN
78.57mol% MgO, 沿X
85–109>5mol% MgO
1075mol% MgO
1105mol% MgO
110.65mol% MgO
110.87mol% MgO
1.07950.539751155mol% MgO, LN
注意:PM温度值在很大程度上取决于熔体的化学计量。

角度和温度带宽的实验值

相互作用波长[μm]T[℃]θpm[deg] Δθint[deg]ΔT[℃]Note
SHG, o+o e
1.06420.53212076 0.0635mol% MgO
25.4 900.680.6mol% MgO
107902.160.735mol% MgO
110.6 900.735mol% MgO

折射率随温度的变化

  355nm406nm532nm633nm1064nm
铌酸锂25°C2.401792.326312.236222.203512.15714
50°C2.403432.328072.237652.204582.15757
75°C2.407222.33082.23942.206072.15884
掺镁铌酸锂25°C2.384822.312482.22532.193232.14757
50°C2.387782.314412.226442.194242.14861
75°C2.391522.317182.228192.195672.14966

掺杂5mol%MgO的LiNbO3的折射率温度导数

MgO 5 mol%的LiNbO3的折射率的温度导数
λ[µm]dno/dT×106[ K-1]dne/dT×106[ K-1]
0.5397516.66372.763
0.632812.12164.866
1.07954.35654.19
1.34145.89552.665

5mol%MgO:LiNbO3的二阶非线性系数的绝对值

|d31(0.852µm)|=4.9pm/V|d33(0.852µm)|=28.4pm/V
|d31(1.064µm)|=4.4pm/V|d33(1.064µm)|=25.0pm/V
|d31(1.313µm)|=3.4pm/V|d33(1.313µm)|=20.3pm/V

光谱

LiNbO3和LiNbO3的吸收光谱:MgO(7 mol%)晶体在吸收边缘区域

未掺杂和掺杂MgO的LN晶体的透射光谱

具有I型相匹配(oo-e)的LiNbO3:MgO(7 mol。%)晶体中SHG强度的角度依赖性

MgO:LiNbO3的寻常波和非寻常波在25°C时的热光常数

参考文献

  • [1] Su Z , Meng Q , Zhang B . Analysis on the damage threshold of MgO:LiNbO3 crystals under multiple femtosecond laser pulses[J]. Optical Materials, 2016, 60:443-449.
  • [2] Lv J , Cheng Y , Lu Q , et al. Femtosecond laser written optical waveguides in z-cut MgO:LiNbO3 crystal: Fabrication and optical damage investigation[J]. Optical Materials, 2016, 57:169-173.

[3] Holstein W L . Etching study of ferroelectric microdomains in LiNbO3 and MgO:LiNbO3[J]. Journal of Crystal Growth, 1997, 171(s 3–4):477-484.
[4] Li Z , Bing P , Yuan S , et al. Investigation on terahertz generation at polariton resonance of MgO:LiNbO3 by difference frequency generation[J]. Optics & Laser Technology, 2015, 69:13-16.
[5] Chen Y L , Yuan J W , Yan C F , et al. Low-pump-threshold tunable optical parametric oscillator using periodically poled MgO:LiNbO 3[J]. Optics Communications, 2007, 273(2):560-563.
[6] Lai Y J , Chen J C , Liao K C . Investigations of ferroelectric domain structures in the MgO : LiNbO 3 fibers by LHPG[J]. Journal of Crystal Growth, 2010, 198:531-535.
[7] Chen Y , Guo J , Liu X , et al. Highly efficient blue light of femtosecond pulses by second-harmonic generation in periodically poled MgO:LiNbO3[J]. Optics Communications, 2004, 238(1-3):201-204.
[8] Shen J , Ding C . Investigation of operational characteristics of terahertz-wave parametric oscillators pumped by picosecond based on MgO:LiNbO3 crystal[J]. Optik – International Journal for Light and Electron Optics, 2013, 124(15):2140-2146.
[9] A X C , B Z W , A S H , et al. Optical and structural characterization of annealed proton exchange waveguides in Y-cut MgO:LiNbO 3[J]. Optical Materials, 2005, 27( 10):1596-1601.
[10] Hong-Ki, Kim, and, et al. Measurement of cascaded phase shift in MgO:LiNbO3 single crystal by nonlinear ellipsometric method[J]. Optics Communications, 1999.
[11] Burlot R , R Moncorgé, Manaa H , et al. Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3 and LiTaO3 single crystals relevant for laser applications[J]. Optical Materials, 1996, 6(4):313-330.
[12] Li Z , Bing P , Xu D , et al. High-power tunable terahertz generation from a surface-emitted THz-wave parametric oscillator based on two MgO:LiNbO3 crystals[J]. Optik – International Journal for Light and Electron Optics, 2013, 124(21):4884-4886.
[13] Li H P , Tang D Y , Ng S P , et al. Temperature-tunable nanosecond optical parametric oscillator based on periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2006, 38(3):192-195.
[14] Dixit N , Mahendra R , Naraniya O P , et al. High repetition rate mid-infrared generation with singly resonant optical parametric oscillator using multi-grating periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2010, 42(1):18-22.
[15] 代丽, 刘春蕊, 闫哲华, et al. Effect of dopant concentration on the spectra characteristic in Zr4+ doped Yb:Nd:LiNbO3 crystals[J]. Journal of Rare Earths, 2017(35):761-766.
[16] Bhushan R , Yoshida H , Tsubakimoto K , et al. High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3[J]. Optics Communications, 2008, 281(14):3902-3905.
[17] Jiang L , Li B , Wang H F . Infrared absorption study of OH in MgO:LiNbO 3 doped with Cr and Nd[J]. Physics Letters A, 1995, 205(1):112-116.
[18] Zhang B , Jiao Z , Wang B . Efficient second-harmonic generation from polarized thulium-doped fiber laser with periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2015, 69:60-64.
[19] Rodriguez-Mendoza, U. R , Santiuste M , et al. Pressure-induced effects on the spectroscopic properties of Nd3+ in MgO:LiNbO3 single crystal. A crystal field approach[J]. Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2017.

MgO:LiNbO3相关的案例:

暂无与本产品相关的案例,请访问光宝光电的案例页面查看其他案例。

如果你对我们的MgO:LiNbO3感兴趣,请联系我们获取价格或申请样品。

MgO:LiNbO3相关的文章:

暂无与本产品相关的文章,请访问光宝光电的文章页面播放其他文章。

MgO:LiNbO3相关的解决方案:

MgO:LiNbO3相关的视频:

Scroll to Top