当前位置: 首页 » Products » 非线性晶体 » KNbO3

KNbO3

当前位置: 首页 » Products » 非线性晶体 » KNbO3
KNbO3

KNbO3(铌酸钾)晶体(简称KN)是非常重要的非线性光学晶体之一。其非线性光学品质因数d2 /n3 ,在所有的氧化物晶体中名列第一,KN的平均折射率为2.2,反射率的理论值为14%,理论透过率为86%。。该晶体化学性质稳定,非线性光学系数大,对半导体860nm激光直接倍频(101mW)已得到近40mW的430nm蓝光。KN晶体由于其特殊的性能,使其成为微激光器这一新用途开发的一个重要环节。蓝色激光器的实现是当务之急,而KN晶体正是产生二次谐波,实现蓝色激光器的最理想的材料之一。

特点

  • 毫秒响应时间;
  • 非常低的散射损耗;
  • 非线性光学系数大;
  • 非线性光学系数高;
  • 出色的光折变特性;
  • 光照射下的高稳定性;
  • 有利的相位匹配特性;

物化性质

化学式KNbO3
晶体结构斜方,mm2
晶格参数a = 5.6896Å,
b = 3.9692Å,
c = 5.7256Å
质量密度4.617 g/cm3
熔点1333 K
居里温度498 K
介电轴和结晶轴的分配 X, Y, Z ⇒ b, a, c
P = 0.101325MPa时的比热cpcp= 767 J/kgK
导热系数κ > 3.5 W/mK
热膨胀aa=5.010×10-6 /℃;
ab=1.410×10-5/℃;
ac=5.010×10-7/℃

非线性光学性质

属性数值
非线性光学系数d31=-15.8 pm/V, d32=-18.3 pm/V @ 1064 nm
最短SHG波长425 nm(Ⅰ型NCPM,y切或a切)
Ⅰ型SHG的接受角为1064 nmDq = 0.24 mrad / cm(内部)
Ⅰ型SHG的接受温度为1064 nmDT=0.3 ℃/cm

线性光学性质

属性数值
透明范围400-5500 nm
红外截止波长5.5 μm
吸收损失<=1%/cm @1064 nm
损伤阈值<= 4 J/cm2 @527 nm(500ps,单脉冲)
<= 6 J/cm2 @1054 nm(700ps,单脉冲)

相位匹配角实验值(T=293K)

相互作用波长[μm]φexp [deg]θexp [deg]
XY平面,θ=90°
SHG, e + e ⇒ o
0.946 ⇒ 0.473≈30 
4.7599 ⇒ 2.3799569.9 
YZ 平面, φ = 90°
SHG, o + o ⇒ e
0.86 ⇒ 0.43 83.5
0.89 ⇒ 0.445 70.7
0.92 ⇒ 0.46 64
0.94 ⇒ 0.47 60.5
1.0642 ⇒ 0.5321 46.4
1.3188 ⇒ 0.6594 30.6
1.3382 ⇒ 0.6691 29.7
3.5303 ⇒ 1.76515 37.3
4.7291 ⇒ 2.36455 77.3
SFG, o + o ⇒ e
1.3188 + 0.6594 ⇒ 0.4396 62.3
1.3188 + 1.0642 ⇒ 0.5889 37.7
4.7762 + 3.1841 ⇒ 1.9105 46.6
5.2955 + 3.5303 ⇒ 2.1182 59.5
XZ 平面, φ = 0°, θ > Vz
SHG, o + o ⇒ e
1.0642 ⇒ 0.5321 70.4
1.3188 ⇒ 0.6594 56.8
1.3382 ⇒ 0.6691 56.2
3.5303 ⇒ 1.76515 58.8
SFG, o + o ⇒ e
1.3188 + 1.0642 ⇒ 0.5889 62.6
5.2955 + 3.5303 ⇒ 2.1182 86.1

T=295K时温度带宽的实验值

相互作用波长[μm]θexp [deg]ΔT [◦C]
YZ 平面, φ = 90°
SHG, o + o ⇒ e
1.0642 ⇒ 0.532146.40.39
1.3382 ⇒ 0.669129.70.59
3.5303 ⇒ 1.7651537.12.3
SFG, o + o ⇒ e
5.2955 + 3.5303 ⇒ 2.118259.52.4
XZ平面, φ = 0°, θ >Vz
SHG, o + o ⇒ e
1.0642 ⇒ 0.532171.40.77
1.3382 ⇒ 0.669156.22.2
3.5303 ⇒ 1.7651558.110.1

光谱

KNbO3-相位匹配角的温度变化室温下KNbO3的折射率分散
KNbO3-透射光谱KNbO3-光学吸收

参考文献

[1]  Baudisch M ,  Hemmer M ,  Pires H , et al. Performance of MgO:PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power[J]. Optics Letters, 2014, 39(20):5802-5.
[2]  Kim J H ,  Yoon C S . Domain switching characteristics and fabrication of periodically poled potassium niobate for second-harmonic generation[J]. Applied Physics Letters, 2002, 81(18):3332-3334.
[3]  Zysset B ,  Biaggio I ,  Gunter P N . Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence[J]. Journal of the Optical Society of America B, 1992, 9(3).
[4]  Umemura N ,  Yoshida K ,  Kato K . Phase-Matching Properties of KNbO_3 in the Mid-Infrared[J]. Applied Optics, 1999, 38(6):991-994.
[5]  Uematsu Y . Nonlinear Optical Properties of KNbO3 Single Crystal in the Orthorhombic Phase[J]. Japanese Journal of Applied Physics, 1974, 13(9):1362-1368.
[6]  Baumert J C ,  Hoffnagle J ,  Gunter P . Nonlinear Optical Effects In KNbO3 Crystals At AlxGa1_xAs, Dye, Ruby And Nd:YAG Laser Wavelengths.[C]// European Conference on Optics. International Society for Optics and Photonics, 1985.
[7]  Yoshiguchi T ,  Ota T ,  Adachi N . Crystal Growth of KNbO 3 by Solution-Dropping Method[J]. Materials Science Forum, 2007, 544-545:697-700.
[8]  Yamanouchi K ,  Wagatsuma Y ,  ODaGawa H , et al. Single crystal growth of KNbO3 and application to surface acoustic wave devices[J]. Journal of the European Ceramic Society, 2001, 21(15):2791-2795.
[9] Shao-Yi, Yong-Qiang, Zhang, et al. First-principles study of structural, electronic, elastic, and optical properties of cubic KNbO3 and KTaO3 crystals[J]. Physica status solidi, B. Basic research, 2017, 254(5).
[10]  Grabowska E . Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review[J]. Applied Catalysis B Environmental, 2016, 186:97-126.
[11]  Comes R ,  Lambert M ,  Guinier A . The chain structure of BaTiO3 and KNbO3[J]. Solid State Communications, 1968, 6(10):715-719.
[12]  Zgonik M ,  Schlesser R ,  Biaggio I , et al. Materials constants of KNbO3 relevant for electro- and acousto-optics[J]. Journal of Applied Physics, 1993, 74(2):1287-1297.
[13] MD Fontana,  Metrat G ,  Servoin J L , et al. Infrared spectroscopy in KNbO3 through the successive ferroelectric phase transitions[J]. Journal of Physics C Solid State Physics, 1984, 17(3):483-514.
[14] A, Magrez, E, et al. Growth of Single-Crystalline KNbO3 Nanostructures.[J]. ChemInform, 2006, 37(15):no-no.
[15]  Tennery V J ,  Hang K W . Thermal and X‐Ray Diffraction Studies of the NaNbO3KNbO3 System[J]. Journal of Applied Physics, 1968, 39.
[16] Wu, Xing, and, et al. Progress in KNbO3 crystal growth[J]. Journal of Crystal Growth, 1986, 78(3):431-437.
[17]  Baumert J C , P Günter,  Melchior H . High Efficiency Second Harmonic Generation in KNbO3 Crystals[J]. Optics Communications, 1983, 48(3):215-220.
[18]  Currat R ,  Comes R ,  Dorner B , et al. Inelastic neutron scattering in orthorhombic KNbO3[J]. Journal of Physics C:Solid State Physics, 1974.
[19]  Matthews D G ,  Conroy R S ,  Sinclair B D , et al. Blue microchip laser fabricated from Nd:YAG and KNbO3[J]. Optics Letters, 1996, 21(3):198-200.
[20]  Krakauer H ,  Yu R ,  Wang C Z , et al. Dynamic local distortions in KNbO3[J]. Journal of Physics Condensed Matter, 1999, 11(18):3779.
[21] U, Flückiger, and, et al. On the preparation of pure, doped and reduced KNbO3 single crystals[J]. Journal of Crystal Growth, 1978.
[22]  Yang Y ,  Jung J H ,  Yun B K , et al. Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO(3) nanowires.[J]. Advanced Materials, 2012, 24(39):5357-5362.

如果你对我们的KNbO3感兴趣,请联系我们获取价格或申请样品。

KNbO3相关的文章:

暂无与本产品相关的文章,请访问光宝光电的文章页面播放其他文章。

KNbO3相关的案例:

暂无与本产品相关的案例,请访问光宝光电的案例页面查看其他案例。

KNbO3相关的解决方案:

KNbO3相关的视频:

暂无与本产品相关的视频,请访问光宝光电的视频页面播放其他视频。

Scroll to Top