当前位置: 首页 » Products » 被动调Q晶体 » Co:Spinel(钴尖晶石)

Co:Spinel(钴尖晶石)

当前位置: 首页 » Products » 被动调Q晶体 » Co:Spinel(钴尖晶石)
Co:Spinel(钴尖晶石)

我司的Co:spinel晶体,又称钴尖晶石,化学式为Co2+: MgAl2O4,是一种综合性比较优良的调Q晶体产品。钴尖晶石是可饱和吸收体,是用于在人眼安全波长 1.5μm 下工作的固态激光器的无源 Q 开关。钴掺杂的铝酸镁尖晶石(Co:MgAl2O4)可以产生短的纳秒脉冲,在眼睛安全波长 1.5μm 附近具有高峰值功率,非常适合遥测应用。具有高吸收段、使用寿命长、钴分布均匀、吸收带宽等优点。Co2+掺杂 MgAl2O4 的吸收光谱在 1200-1600nm 波长范围内表现出宽的吸收带,表明 Co2+离子取代了 MgAl2O4晶格中四面体配位的 Mg2+离子。具有固态可饱和吸收体的固态激光器的无源 Q 开关是一种非常有吸引力的 Q 开关技术,因为它允许开发紧凑且低成本的纳米和亚纳秒脉冲激光源。在工业应用中,由于 1.5μm 激光的辐射对眼睛安全性较高,因此该波长得到广泛关注。这种波长的其他优点是大气和熔融石英波导的高透明度和灵敏的室温光探测器(Ge 和 InGaAs 光电二极管)的可用性。这使得 1.5μm 激光器非常适用于测距仪,环境传感,电信,手术等。Co:尖晶石吸收峰接近 1520nm,最常用于人眼安全激光。

物理和化学特性

属性数值
化学式Co2+:MgAl2O4
晶体结构立方
晶格参数8.07Å
密度3.62 g/cm3
熔点2105°C
折光率n=1.6948 @1.54 μm
导热系数/((W·cm-1·K-1 @ 25°C)0.033W
热膨胀/(10-6 /°C @ 25°C)1.046
比热/(J·g-1·K-15.9
硬度(莫氏)8.2
消光比25dB
取向[100] or [111] < ±0.5°
光密度0.1-0.9
损坏阈值>500 MW/cm2
Co2+的掺杂浓度0.01-0.3 atm%

材料规格

属性数值
浓度(0.05~0.35) wt%
吸收系数0 7 cm-1
基态吸收截面GSA(E-19 cm22.8±0.4@1340nm
激发态吸收截面ESA(E-20 cm22.0±0.6@1340nm
基态吸收截面GSA(E-20 cm23.5±0.4@1540nm
激发态吸收截面ESA(E-20 cm21.0±0.6@1540nm
工作波长1200 – 1600 nm
最终配置Flat/Flat
品质因数(FOM)100~300
涂层AR/AR@1540R<0.2%;
AR/AR@1340R<0.2%

吸收发射光谱

钴尖晶石调Q晶体-吸收谱1-南京光宝-CRYLINK钴尖晶石调Q晶体-吸收谱2-南京光宝-CRYLINK
吸收光谱1吸收光谱2
钴尖晶石调Q晶体-发射谱-南京光宝-CRYLINK
发射光谱

参考文献

[1]  Denker B ,  Galagan B ,  Kisel V , et al. Passive shutters for Q-switching continuously diode-pumped Er-glass laser[M].  2005.
[2] K, Izumi, S, et al. Optical properties of 3d transition-metal-doped MgAl2O4 spinels[J]. Physical Review B, 2007, 76(7):75111-75111.
[3]  Nataf L , F Rodríguez,  Valiente R . Pressure-induced Co2+ photoluminescence quenching in MgAl2O4[J]. Physical review. B, Condensed matter, 2012, 86(12):4995-5013.
[4]  Yumashev K V ,  Denisov I A ,  Kuleshov N V . Passive Q-switching of 1.34-/spl mu/m neodymium laser using Co/sup 2+/:LiGa/sub 5/O/sub 8/ and Co/sup 2+/:MgAl/sub 2/O/sub 4/[C]// Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505). IEEE, 2000.
[5]  Lin H Y ,  Sun D ,  Copner N , et al. Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal[J]. Optical Materials, 2017, 69:250-253.
[6]  Bajor A L ,  Chmielewski M ,  Diduszko R , et al. Czochralski growth and characterization of MgAl2O4 single crystals[J]. Journal of Crystal Growth, 2014, 401(sep.1):844-848.
[7] Javed, Ahmad, Maria, et al. Effect of Co2+ substitution on MgAl2O4 studied by infrared reflectance spectroscopy[J]. Optik International Journal for Light & Electron Optics, 2017.
[8]  Belghachem N ,  Mlynczak J ,  Kopczynski K , et al. Thermal analysis of a diffusion bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip lasers[J]. Optical Materials, 2016, 60:546-551.
[9] Nabil, Belghachem, Jaroslaw, et al. Comparison of laser generation in thermally bonded and unbonded Er3+,Yb3+:glass/Co2+:MgAl2O4 microchip lasers[J]. Optical Materials, 2015.
[10]  Duan X L ,  Song C F ,  Wu Y C , et al. Preparation and optical properties of nanoscale MgAl 2O 4 powders doped with Co 2+ ions[J]. Journal of Non-Crystalline Solids, 2008, 354(29):3516-3519.
[11]  Yumashev K V ,  Denisov I A ,  Posnov N N , et al. Nonlinear absorption properties of Co2+:MgAl2O4 crystal[J]. Applied Physics B, 2000, 70(2):179-184.
[12]  Kanwal K ,  Ismail B ,  Rajani K S , et al. Effect of Co2+ Ions Doping on the Structural and Optical Properties of Magnesium Aluminate[J]. Journal of Electronic Materials, 2017.
[13]  Ryabtsev G L ,  Bezyazychnaya T V ,  Bogdanovich M V , et al. Optimized diode-pumped passive Q-switched ytterbium–erbium glass laser[J]. Applied Physics B, 2012, 108(2):283-288.
[14]  Tolstik N A ,  Troshin A E ,  Kurilchik S V , et al. Spectroscopy, continuous-wave and Q-switched diode-pumped laser operation of Er3+,Yb3+:YVO4 crystal[J]. Applied Physics B, 2007, 86(2):275-278.
[15]  Mlynczak J ,  Belghachem N . Monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip lasers[J]. Optics Communications, 2015, 356(4):166-169.
[16]  Duan X L ,  Yuan D R ,  Cheng X F , et al. Absorption and photoluminescence characteristics of Co 2+:MgAl 2O 4 nanocrystals embedded in sol–gel derived SiO 2-based glass[J]. Optical Materials, 2004, 25(1):65-69.
[17]  Nemec M ,  Jelinkova H ,  Sulc J , et al. Passive Q-switching at 1645 nm of Er:YAG laser with Co:MALO saturable absorber[C]// Quantum Electronics Conference & Lasers & Electro-optics. IEEE, 2012.
[18]  Bhardwaj A ,  Agrawal L ,  Pal S , et al. Optimization of passively Q -switched Er:Yb:Cr:phosphate glass laser: theoretical analysis and experimental results[J]. Applied Physics B, 2007, 86(2):293-301.
[19]  Kalashnikov V L ,  Shcherbitsky V G ,  Kuleshov N V , et al. Pulse energy optimization of passively Q-switched flash-lamp pumped Er:glass laser[J]. Applied Physics B, 2002, 75(1):35-39.

如果你对我们的Co:Spinel(钴尖晶石)感兴趣,请联系我们获取价格或申请样品。

Co:Spinel(钴尖晶石)相关的文章:

Co:Spinel(钴尖晶石)相关的案例:

Co:Spinel(钴尖晶石)相关的解决方案:

Co:Spinel(钴尖晶石)相关的视频:

Scroll to Top